Подлодки Корабли Карта присутствия ВМФ Рейтинг ВМФ России и США
Какой способ жилищного обеспечения военных вы считаете наиболее оптимальным?
Жилье в натуральном виде
    62,67% (47)
Жилищная субсидия
    18,67% (14)
Военная ипотека
    18,67% (14)

Поиск на сайте

§ 18. МЕРКАТОРСКАЯ ПРОЕКЦИЯ

Понятие о локсодромии и ортодромии

При движении судна постоянным истинным курсом линия курса пересекает каждый меридиан под одним и тем же углом и на земной поверхности эта линия получается двоякой кривизны, называемая локсодромией (что в переводе с греческого означает «косой бег»).

Плавание по локсодромии удобно, так как курс судна остается постоянным, а это упрощает все расчеты, связанные с прокладкой. Основные свойства локсодромии, проходящей через две точки, можно выявить из ее уравнения:


Из этого уравнения следует, что при К = 0° или К = 180° tg К = 0, тогда и λ2 — λ1 = 0, следовательно, на истинных курсах 0 или 180° долгота точек не изменяется и локсодромия совпадает с меридианом, превращаясь в дугу большого круга, и в данном случае проходит через земные полюса.

Если уравнение написать в виде


и принять К — 90° или К = 270°, то при этих значениях tg К = ~. Так как разность долгот λ2 — λ1 находящаяся в числителе, не может быть равна бесконечности, то должен быть равен нулю знаменатель, а он может быть равен нулю при 45° + φ1/2 = 45°+ φ2/2 т. е. когда φ1 = φ2.


Рис. 36

Следовательно, при К = = 90° или К = 270° широта точек не изменяется и локсодромия совпадает с параллелью или при φ2 = φ1 = = 0 — с экватором.

Для всех истинных курсов, отличных от 0 — 180° и 90 — 270°, локсодромия по спирали приближается к одному из полюсов, но никогда его не достигает (рис. 36).

Длина отрезка локсодромии, пройденного судном на данном курсе, не является кратчайшим расстоянием на земной поверхности. Кратчайшим расстоянием на земной поверхности при переходе судна из одной точки до другой будет дуга большого круга, называемая ортодромией (что в переводе с греческого означает «прямой бег»).

Ортодромия с каждым меридианом составляет переменные углы. Поэтому плавание по ортодромии требует предварительного вычисления как ее положения, так и курсов, которыми ведут судно по дуге большого круга (см. § 46).

Требования, предъявляемые к морским навигационным картам

При выборе проекции для построения той или иной карты всегда исходят из требований обеспечения решения задач, для которых она предназначается.

Картографическая проекция морских навигационных карт должна быть наиболее удобной для их использования в море, т. е. для решения основных задач по обеспечению безопасности судовождения наиболее простыми способами и приемами.

Исходя из этого, картографическая проекция морских навигационных карт должна удовлетворять следующим требованиям. Чтобы: линия пути судна, идущего постоянным курсом, т. е. локсодромия, изображалась прямой линией;

величина углов, измеряемых с судна между разными ориентирами на местности, соответствовала величинам углов между теми же ориентирами на карте, т. е. проекция карты должна быть равноугольной; масштаб в пределах карты изменялся в возможно малых пределах т. е. искажения длин на карте не превышали ошибок графических построений и измерений на карте, выполняемых с помощью прокладочного инструмента.

Удовлетворяющие этим требованиям карты построены по проекции, предложенной в 1569 г. голландским картографэм Герардом Кремером, известным под именем Меркатора, поэтому эта проекция называется меркаторской. Меркаторская проекция является равноугольной цилиндрической проекцией, на ней земные меридианы и параллели изображаются прямыми, взаимно перпендикулярными линиями, а локсодромия — прямой, составляющей с меридианами один и тот же угол.

Математическое обоснование принципа меркаторской проекции

Представим, что изображение Земли выполнено в виде глобуса (рис. 37), меридианы на нем сделаны из стальных упругих проволок, закрепленных у полюсов, а параллели — из растягивающегося материала, скрепленные с меридианами.


Рис. 37

Меридианы и параллели окрасим краской и освободим крепления проволочных меридианов у полюсов. Тогда меридианы выпрямятся, а параллели растянутся и на внутренней поверхности цилиндра как бы отпечатаются. Теперь разрежем цилиндр по образующей (по одному из меридианов); на нем будет нанесена прямоугольная сетка (следы параллелей и меридианов), в которой длина меридианов осталась неизменной, а каждая параллель растянулась до длины экватора. При этом параллель, близкая к экватору, растянется меньше, а с увеличением широты растяжение параллелей увеличивается все значительнее. Остров К круглой формы, который был на глобусе, на развернутой плоскости цилиндра спроектируется в виде овала. Для сохранения подобия изображения на глобусе и проекции его на плоскости необходимо соответственно вытянуть по длине и меридианы.

Для доказательства этого положения рассмотрим рис. 38, где обозначим радиус параллели пп через r, широту этой параллели cp, радиус глобуса R.


Рис. 38

Из треугольника пОе, в котором сторона Ое = r, получим r = R - cos φ, a R = r * 1/cos φ или R = r - sec φ. Умножив обе части равенства на 2я, получим 2ПR = 2Пtr*sec φ.

Следовательно, каждая параллель на карте цилиндрической проекции растягивается на величину, пропорциональную секансу своей широты. Поэтому для сохранения подобия фигур на карте фигурам на местности отрезки меридианов необходимо растянуть пропорционально sec φ, чем будет достигнута равноугольность проекции.

Меридиональные части

Расстояния по меридиану от экватора до данных параллелей на меркаторской карте, выраженные в линейных единицах, называются меридиональными частями. Они обозначаются буквой D.

Для удобства меридиональные части выражают длиной дуги экватора в I, называемой экваториальной милей.

В табл. 26 (МТ—63) длина меридиональных частей рассчитана применительно к эллипсоиду Красовского.

Значения в таблице вычислены для широт от 0 до 89° 59' через 1' широты с точностью до 0,1 экваториальной мили. Для определения величины меридиональных частей на промежуточных значениях минуты широты (для десятых долей 1') применяют простое интерполирование.

Пример. Найти меридиональную часть для параллели 50° 18',5.

Решение. По табл. 26 (МТ—6.3) находим:


Расстояние по меридиану на меркаторской проекции между двумя параллелями, выраженное в экваториальных милях, называется разностью меридиональных частей (РМЧ) и обозначается AD.

Разность меридиональных частей двух параллелей равна алгебраической разности меридиональных частей этих параллелей


Пример. Определить разность меридиональных частей параллелей cp1 = 63°40' N и cp2 = 66°20' N.

Решение. По табл. 26 (МТ—63) находим:


Пример. Определить разность меридиональных частей параллелей cp1 = 5°12' N и cp2 = 3°28, 5.

Решение. По табл. 2 6 (МТ—63) имеем:


Меридиональные части используют при построении картографической сетки морских карт в меркаторской проекции, а разность меридиональных частей входит в одну из основных формул письменного счисления (см. гл. VII) .

Разность меридиональных частей двух параллелей, отстоящих друг от друга на 1', даст нам длину отрезка, изображающего на карте меркаторской проекции одну экваториальную минуту в данной широте. Эта разность меридиональных частей представляет не что иное, как изображение одной морской мили на карте меркаторской проекции. Меркаторской милей пользуются как единицей линейного масштаба для измерения широт и расстояний на карте меркаторской проекции.

Поскольку морская миля, как это было указано ранее, имеет постоянную величину на поверхности Земли, то она на морской карте меркаторской проекции изображается отрезками различной длины, в зависимости от широты места, к которому она относится.

Пример. Рассчитать величину меркаторской мили в широтах 40° и 70°.

Решение. 1) Выбираем меридиональные части для широт 39°30' и 40°30' по табл. 26 (МТ—63) :


Отсюда меркаторская миля в широте 40° равна 78,0/60 = 1,3 экв. мили.

2) выбираем меридиональные части для широт 69°30' и 70°30':


Следовательно, в cp = 70° меркаторекая миля равна 175,4/60 = 2,923 экв. мили. Из этого примера видно, что отношение длины меркаторской мили в cp = 70° к длине ее cp = 40° равно 2,923/1,3 = 2,248, т. е. меркаторская миля в ср = 70° изображается отрезком, в 2,248 раза большим, чем в cp = 40°.

Поэтому при измерении по морской навигационной карте расстояний между какими-либо точками необходимо расстояния в одну милю или в несколько миль брать всегда с боковой рамки карты в той же самой широте, в какой расположены точки. Практически для измерения расстояний на карте меркаторской проекции пользуются длиной меркаторской мили, соответствующей средней широте измеряемой линии.

Главный и частный масштабы карт меркаторской проекции

Главным масштабом на меркаторской карте называется масштаб, отнесенный к экватору (если проекция построена на поверхности касательного к нему цилиндра) или к параллели сечения, называемой главной параллелью (если проекция построена на поверхности секущего цилиндра).

Частный масштаб в меркаторской проекции постоянен по всем направлениям не только в данной точке, но и во всех точках, принадлежащих одной и той же параллели.

За пределами экватора или главной параллели, численное значение частного масштаба будет отличаться от главного масштаба, изменяясь все более по мере удаления к северу или югу от экватора или главной параллели.

Если проекция построена на поверхности касательного цилиндра, то на экваторе увеличение масштаба с = 1, а поскольку каждая параллель равна экватору (растянута в sec φ раз), то на каждой параллели с = sec φ.

Например, в широте 30° увеличение масштаба будет в 1,5 раза, в широте 60° — в 2 раза, а в широте 80° — в 5,75 раза.

При построении проекции на поверхности секущего цилиндра на главной (секущей) параллели увеличение масштаба с = 1.

В такой проекции все параллели становятся равными главной, и при этом все параллели, находящиеся ближе к полюсу, чем главная, растягиваются во столько раз, во сколько секанс широты данной параллели sec φ больше секанса широты главной параллели sес cpг.п. Следовательно, на этих параллелях увеличение масштаба с>1 . Параллели, расположенные к экватору, сокращаются во столько раз, во сколько sec φ ГП. больше sec φ, и, следовательно, с < 1 . Например, если главная параллель 45°, увеличение масштаба на параллели 60° будет около 1, 4, на параллели 30°—0,8, а на экваторе — 0,7.

Так как увеличение масштаба — отношение частного масштаба к главному c = μ/μ0 то частный масштаб μ = cμ0. Если х заменить отношением 1/C (С — знаменатель частного масштаба), а главный масштаб μ0 выразить через 1/C0 где С0 — знаменатель главного масштаба, то знаменатель частного масштаба


штаба для точек каждой параллели при построении проекции на поверхность касательного цилиндра определится из выражения С =


а при построении на поверхность секущего цилиндра С=


Морские карты, как правило, охватывают незначительные участки земной поверхности, поэтому в пределах карты величины главного и частных масштабов мало отличаются друг от друга. По главному масштабу, указанному в заголовке карты, судоводитель выбирает карты для решения тех или иных задач.

Предельная точность масштаба

От масштабов карт и планов зависит точность, с которой на них можно производить линейные измерения.

Линейное расстояние на местности, соответствующее 0,2 мм на карте или плане, называется предельной точностью масштаба. Величина 0,2 мм принята потому, что она приблизительно равна диаметру углубления, получаемого на карте при уколе иглой циркуля, и соответствует минимальной величине, различаемой невооруженным глазом. Величина предельной точности масштаба зависит от масштаба карты. Так, если масштаб карты 1/100000 то эта величина будет 20 м.

Следовательно, линия, проведенная на карте такого масштаба остроотточенным карандашом, будет соответствовать на местности полосе шириной 20 м и на этой карте мы не сможем различить расстояний меньше 20 м.

Вперед
Оглавление
Назад


Главное за неделю