Видеодневник инноваций
Подлодки Корабли Карта присутствия ВМФ Рейтинг ВМФ России и США Военная ипотека условия
Баннер
КМЗ как многопрофильное предприятие

КМЗ:
от ремонта двигателей
к серийному производству

Поиск на сайте

Одна из главных причин гибели дирижаблей

1. В начале августа 1921 г. погиб, маневрируя над Гуллем, английский ди­рижабль R-38. Мне пришлось быть в Гулле примерно через неделю после этого для осмотра предложенных для продажи пароходов. Пароходы эти стояли в Queen Alexandra Docks и при поездке как туда, так и обратно я имел слу­чай беседовать с клерком брокерской конторы, продававшей пароходы.

Клерк оказался толковым молодым моряком, плававшим всю войну старшим штурманом на тральщиках и истребителях подводных лодок.

На мой вопрос, видел ли он гибель R-38 и как она произошла, он мне рас­сказал, что как раз в это время в конторе был перерыв для чая и он, стоя на улице, следил за маневрами воздушного корабля, пролетавшего почти прямо над конторой на высоте около 1500 фут., так что все было отчетливо видно. Корабль шел, как потом выяснилось, со скоростью около 50 англ. миль в час, и, положив руля, начал описывать циркуляцию в горизонтальной плоскости; циркуляция эта становилась все более и более крутой; вдруг дирижабль в го­ризонтальной плоскости сложился пополам, переломился на две части и рух­нул в реку Гумбер.

На мой вопрос, каков примерно был диаметр циркуляции, я получил ответ: «Диаметр циркуляции был очень мал, едва ли более трех длин дирижабля».

Тогда мне стало совершенно ясно: с воздушным кораблем R-38 произошло то же самое, что происходило в 1903 г. при испытаниях броненосца «Алек­сандр III».

Этот броненосец производил на мерной миле близ Кронштадта ходовые ис­пытания механизмов; одновременно испытывали и скорострельную артиллерию, так что пушечные порта батареи были открыты. Когда после первого пробега полным ходом положили руля, чтобы привести корабль на обратный курс, он стал описывать циркуляцию, которая становилась все более и более крутой, сильно кренясь вместе с тем. Крен достиг 12°, до нижнего косяка портов оставалось всего 1 1/2 дюйма, и лишь благодаря тому, что был мертвый штиль и вода в порта не захлестнула, корабль не опрокинулся.

Мне пришлось затем производить систематическое исследование этого корабля (понятно, имея порта батареи закрытыми, чтобы корабль никакой опасности не подвергался) для выяснения причины его рыскания на курсе и плохой управ­ляемости.

Дело оказалось весьма простым. На кораблях этого типа, чтобы достигнуть лучшей поворотливости, в кормовом дейдвуде, было вырезано треугольное от­верстие площадью около 150 кв. фут. (15 м²). Поворотливость оказалась чрез­мерною, корабль не только стал рысклив, но, что еще гораздо хуже, на поворо­те при большом ходе перестал повиноваться рулю.

2. Чтобы дальнейшее стало ясным, необходимо в немногих словах указать, как происходит движение корабля на повороте. Для простоты я ограничусь лишь тем периодом, когда движение уже установилось (примерно после того, как корабль повернулся на 75-90° от первоначального своего курса). Центр тяже­сти корабля G описывает при этом круг, двигаясь по нему равномерно, и ко­рабль равномерно вращается около вертикальной оси, проходящей через его центр тяжести, так что его диаметральная плоскость GD составляет постоян­ный угол DGT, с касательной GT к траектории центра тяжести корабля. Этот угол называется углом дрейфа, величина его обыкновенно около 5-10°.

При таком движении с дрейфом сопротивление воды не только не направ­лено по диаметральной плоскости, но имеет весьма большую поперечную сла­гающую R. На корабль действуют, кроме сопротивления воды, еще следующие силы: а) движущая сила винта или винтов, направленная по диаметральной плос­кости; б) давление на руль. Так как центр тяжести корабля движется равно­мерно по кругу, то все эти силы приводятся к одной равнодействующей, на­правленной к центру О этого круга. По малости угла дрейфа эта сила практи­чески равна боковой или поперечной слагающей сопротивления воды и весьма велика по сравнению с прочими силами, действующими на корабль, во много раз превышая как давление на руль, так и упорное давление винтов.

Возьмем описываемый случай броненосца «Александр III». Давление на руль, положенный на борт (35°) при полном ходе этого корабля (16 узлов на цир­куляции), составляло 50 т. Машины корабля развивали около 12 000 инд. сил, практический валовой коэффициент полезного действия около 50 %, значит, упорное давление при скорости 16 узлов, т. е. 8 м в секунду, составит около 60 т. Вес корабля 14 000 т, радиус циркуляции 180 м, значит


Сопоставляя эти величины действующих на корабль во время поворота сил, видим, что если точка приложения К силы сопротивления воды, действующего на корабль при повороте, будет лежать далеко впереди центра тяжести кораб­ля, то эта сила дает такой вращающий момент, что вначале он превышает мо­мент сопротивления воды вращательному движению корабля и угол дрейфа будет увеличиваться; при этом будет увеличиваться и боковая слагающая Д, точка же ее приложения К, при увеличении угла дрейфа, отходит к корме, приближаясь к точке G, — угол дрейфа будет увеличиваться, пока не наступит динамиче­ское равновесие.

Таким образом, на таком корабле угол дрейфа будет происходить не толь­ко вследствие того, что положен руль, а и при всяком случайном отклонении корабля от курса, даже при руле, поставленном прямо.

Так, на броненосце «Александр III», если держать руль прямо, то корабль, случайно отклонившись от курса, быстро приобретал значительный угол дрей­фа, и если продолжать держать руль прямо, то он описывал практически та­кую же циркуляцию диаметром около трех длин, как и при руле, положенном на борт. Вместе с тем, после того как корабль совершал около четверти обо­рота, угол дрейфа становился уже столь большим, что привести корабль на курс, действуя только рулем, было невозможно, а надо было уменьшать ход или сто­порить одну из машин. Точно так же, если на прямом курсе слегка положить руль и вовремя не одержать, то корабль увеличивал свой угол дрейфа, а затем уже, действуя только рулем, его привести на прямой курс было невозможно.

Все эти недостатки исчезли после того, как вырез в кормовом дейдвуде заделали деревянными чаками.

3. На дирижабле роль кормового дейдвуда корабля играет кормовое опере­ние: если оно недостаточно и не компенсирует значительной остроты кормо­вых обводов (кормовые обводы делают острее носовых для уменьшения сопро­тивления воздуха), то на таком дирижабле будут происходить явления, подоб­ные тому, что было на броненосце «Александр III».

Случайное рыскание или надобность изменить курс заставляют положить руля, затем, если руль вовремя не отвести и корабль не одержать, то он может выйти из управления рулем, угол дрейфа получит чрезмерную величину, силы бокового сопротивления вызовут значительные изгибающие моменты, которые, будучи для бро­неносца безвредными, переломят дирижабль, как это и было с R-38.

Совершенно так же в том же 1921 г. или в начале 1922 г. погиб амери­канский дирижабль (название его не помню, — кажется, «Rome»), переломив­шись в вертикальной плоскости.

Насколько известно, в 1916 г. погиб при испытаниях, также переломившись в воздухе, один из цеппелинов, по-видимому, перестав слушаться руля.

Дирижабль R-101, недавно погибший, также рыскнул в вертикальной плос­кости (клюнул носом), рулем одержать не поспели, он ударился о грунт и погиб.

4. Если сравнить продольное сечение цеппелинов и английских дирижаблей, то даже по картинкам видно, что на цеппелинах кормовое образование сравни­тельно полнее и кормовое оперение более развито.

Видимо, для немцев урок 1916 г. не прошел даром, они учитывают долж­ным образом необходимость балансировки боковых сил сопротивления на по­вороте, чтобы не допускать чрезмерного угла дрейфа, и предпочитают обеспе­чить безопасность за счет некоторого увеличения диаметра циркуляции.

Я не вдаюсь в математическую теорию описанного явления и в подробные расчеты, все они основаны на ряде более или менее произвольных допущений; наиболее надежный путь — испытание модели не только в трубе, но, для по­воротливости, и на карусельном приборе.

Вперед
Оглавление
Назад


Главное за неделю